The Engineering Income and Solary Survey

Learn the Value of Engineers in Today's Market

The Engineering Income and Salary Survey Standard Report

Trends Analysis, Policies, and Practices

Published by the Engineering Income and Salary Survey Publishing Group
ISBN: 978-0-7844-1245-9
© 2012 Engineering Income and Salary Survey Publishing Group
Prepared by:
enetrix, A Division of Gallup, Inc.
8476 Greenway Blvd., Suite 100
Middleton, WI 53562
www.enetrix.com

In partnership with:
American Society of Civil Engineers
1801 Alexander Bell Drive
Reston, VA 20191
www.asce.org
American Society of Mechanical Engineers
Three Park Avenue
New York, NY 10016-5990
www.asme.org

Effective Date: April 1, 2012
Publication Date: June 2012

Table of Contents

Introduction 1
About the American Society of Civil Engineers 2
About the American Society of Mechanical Engineers 3
Survey Features 4
The www.ASCE.org/salaries and ASME.enetrix.com Web Sites 4
Complimentary Report 4
Interactive Custom Reports 4
Standard Reports 4
Guide to Finding and Using the Data in this Report 5
Survey Definitions 5
Methodology 6
Interpreting the Data 6
Executive Summary 7
Income Trends 9
Length of Experience 9
Level of Education 10
Level of Education and Length of Experience 12
Professional Responsibility. 14
Major Branch of Engineering 15
Job Function 18
Industry or Service of Employer 20
Licensing and Certification Status 22
Supervisory Responsibility 24
Sub-Regions 26
Metropolitan Area 29
Gender 34
Ethnic Origin 37
Organization Size 39
Policies and Practices 40
Employment Status 40
Layoffs/Downsizing 41
Change in Base Salary 43
Promotions 44
Contract/Temporary/Consulting Employment 44
Compensatory Time Off for Salaried/Exempt Engineers 44
Registration 46
Employer-Sponsored Benefit Plans 47
Appendix: Survey Instrument 48

Introduction

The following report represents the findings of the national compensation survey conducted by the American Society of Civil Engineers (ASCE) and the American Society of Mechanical Engineers (ASME). This is the fifth year that ASCE and ASME have partnered to conduct a joint engineering salary survey.

These surveys have proved to be of considerable value to engineering firms, industrial organizations, national engineering organizations, local and state governmental agencies, and the departments of the federal government, as well as, the United States Congress.

Online survey participants were asked to report their current annual base salary, plus additional cash income from that employer (excluding overtime pay) for the preceding calendar year. Income from secondary or parttime employment was excluded. Readers should note that the information provided in this document is based on response data compiled for the 12 -month period of April 1, 2011, to March 31, 2012. The online version of the salary survey includes the most recent salary information available. All subscribers are encouraged to use the online database to run and view survey reports that include the most current data survey submissions.
enetrix, A Division of Gallup, Inc., a leader in Internet-based survey technology, assisted with the design of the survey instrument and directed the online survey collection and reporting tools. ASCE and ASME acknowledge and thank all respondents participating in this survey.

About the American Society of Civil Engineers
 ASCE
 AMERICAN SOCIETY OF CIVIL ENGINEERS

Founded in 1852, the American Society of Civil Engineers is the world's preeminent civil engineering organization and the U.S.'s oldest engineering society. ASCE is home to more than 140,000 members in the civil engineering profession, positioning them to be global leaders to build a better quality of life.

Mission

Our mission is to help you succeed with yours, by providing essential value to our members, their careers, our partners and the public by developing leadership, advancing technology, advocating lifelong learning, and promoting the profession.

Other Resources

- Organizational resources for getting your company involved www.asce.org/orgresources
- General information about ASCE membership www.asce.org/newmembers
- Information about member benefits visit www.asce.org/benefits
- Career resources www.asce.org/careers
- Online jobs www.asce.org/jobs
- Training for individual or organizations www.asce.org/training
- Access to the world's largest publisher of civil engineering related materials www.pubs.asce.org
- Local activities and programs www.asce.org/local
- Political activities www.asce.org/govrel
- Technical information from any of ASCE's seven Institutes www.asce.org/institutes

General information about ASCE is available at www.asce.org.

About the American Society of Mechanical Engineers

 SETTING THE STANDARD

ASME is a not-for-profit membership organization that enables collaboration, knowledge sharing, career enrichment, and skills development across all engineering disciplines, toward a goal of helping the global engineering community develop solutions to benefit lives and livelihoods. Founded in 1880 by a small group of leading industrialists, ASME has grown through the decades to include more than 120,000 members in over 150 countries worldwide.

Vision

ASME aims to be the essential resource for mechanical engineers and other technical professionals throughout the world for solutions that benefit humankind.

Mission Statement

To serve diverse global communities by advancing, disseminating and applying engineering knowledge for improving the quality of life; and communicating the excitement of engineering.

Core Values

In performing its mission, ASME adheres to these core values:

- Embrace integrity and ethical conduct
- Embrace diversity and respect the dignity and culture of all people
- Nurture and treasure the environment and our natural and man-made resources
- Facilitate the development, dissemination and application of engineering knowledge
- Promote the benefits of continuing education and of engineering education
- Respect and document engineering history while continually embracing change
- Promote the technical and societal contribution of engineers

ASME Credo

Setting the Standard...
... in Engineering Excellence
... in Knowledge, Community \& Advocacy
... for the benefit of humanity
For more information, please visit: www.asme.org.

Survey Features

The www.ASCE.org/salaries and ASME.enetrix.com Web Sites

These interactive survey sites allow engineers to participate and purchase reports online. The online database is continuously updated, and the information found online is "evergreen". The data included in this printed report represents a point-in-time, taken as of April 1, 2012. Therefore, by going online you can access the most current salary information available.

Complimentary Report

All participants of the survey are given access to an online complimentary survey report. This report contains limited data and provides the engineer with salary data for their professional level and geographic region.

Interactive Custom Reports

The interactive online custom reports allow users to view data as it is updated throughout the year. The custom report enables users to select up to nine demographic and professional criteria for their income data analysis. Subscriptions are based on the number of report runs allowed and are tailored to both individual and corporate needs. The custom reports are priced by either ten report runs or unlimited report runs for one year. The unlimited subscription has an additional option for an accompanying printed report, and also grants access to downloadable standard reports, policies and practices, trend analysis, employer-sponsored benefit information, and much more.

The custom reports also allow users to limit their report data to a geographic area based on a zip code. Each zip code is assigned a metropolitan area, consolidated metropolitan area, state, sub-region, and region as defined by enetrix, A Division of Gallup, Inc. The statistical areas (i.e., consolidated metropolitan area and metropolitan area) are based on population statistics as compiled via the most recent U.S. Census.

As an example, a respondent reporting from zip code 60606 would be included in the Chicago metropolitan area. The data would also be included in the Chicago-Gary-Kenosha, IL-IN-WI consolidated metropolitan area. Finally, the data would also be included in Illinois, the Great Lake States sub-region, and the North Central region.

Standard Reports

Preselected data cuts
Users who purchase an unlimited online subscription also receive access to reports with preselected data cuts. These reports are formatted in HTML and provide statistics for all demographic cuts by engineering level. In addition, a downloadable PDF version of these standard reports is available.

Trends Analysis, Policies, and Practices
Users who purchase an unlimited online subscription also receive access to reports on standard data cuts, trends analysis, policies and practices, and benefits information. These reports are presented in this printed report. All of the reports included in this printed report are also accessible online at either of the association Web sites as downloadable PDF documents for those users with an unlimited subscription.

Guide to Finding and Using the Data in this Report

The information in this year's study is presented in three sections, plus the online custom and standard reports:

- Executive Summary: highlights overall salary and income statistics;
- Income Trends: presents total compensation data for each engineering level, plus various data cuts;
- Policies and Practices: highlights trends in prevalence for a number of top areas, such as employment status, changes in base salary, promotion, compensatory time off, and others;
- Online Custom Report: allows you to produce calculations on a combination of all the scope factors solicited in the survey; and
- Online Standard Reports: provides an income and salary report that uses pre-programmed data cuts based on the scope factors solicited in the survey.

Survey Definitions

The following defines the terms used in all of the income data tables:

- Income: constitutes the individual's current annual base salary from the primary employer, plus additional cash income from the individual's primary job (including fees, bonuses, commissions, but excludes overtime pay and income from secondary or part-time employment);
- Bonus: additional cash income from the individual's primary job (including fees, bonuses, commissions, but excludes overtime pay and income from secondary or part-time employment) during the preceding 12-month period;
- Number Reported: the usable number of responses from which the statistics were derived for the data line in which that specific number appears;
- Mean: indicates that the annual compensation of all individuals in a group were added together and the total was divided by the number of individuals involved. This measure of central tendency can be unduly influenced by a few very high or very low data points. While the average permits certain statistical calculations, greater consideration should be given to the median for comparison purposes, especially when the sample size is small;
- Median: the value of the middle item (or the average of the two middle items) of a group of values when they are arrayed from the highest to the lowest. The advantage of the median is that it provides a measure of central tendency that is not unduly influenced by a few very high or very low data points;
- 10th Percentile: a measure of dispersion. When all of the incomes are arrayed from the highest to the lowest, the 10 th percentile is that income below which 10% of the incomes fall;
- 25th Percentile: a measure of dispersion. When all of the incomes are arrayed from the highest to the lowest, the 25 th percentile is that income below which 25% of the incomes fall;
- 75th Percentile: a measure of dispersion. When all of the incomes are arrayed from the highest to the lowest, the 75th percentile is that income below which 75% of the incomes fall; and
- 90th Percentile: a measure of dispersion. When all of the incomes are arrayed from the highest to the lowest, the 90 th percentile is that income below which 90% of the incomes fall.

Methodology

A total of 13,207 online questionnaires were completed between April 1, 2011, and March 31, 2012. Data was eliminated from the survey reports if the respondent was a full-time student, unemployed, was in a job-share position, or retired at the time of the survey. In some cases, pay data was not provided, insufficient, or obviously erroneous. These responses were also eliminated when calculating income statistics. This reduced the sample to 12,720 for this purpose.

Not every participant provided all of the information requested. Questionnaires were included in the study if they provided sufficient information to be included in at least one table of the report.

Anomalies may occur in the income statistics report for a few of the smaller subgroups, if one or more survey participants reported incomes considerably different from the usual income of individuals with a common demographic characteristic. Regretfully, it is not possible to identify and delete all such responses from the survey. Fortunately, these cases have no appreciable effect upon the medians or quartiles reported for major subgroups.

Data for subgroups of extremely small size lack statistical validity. Data was eliminated for any line of data where the sample size was less than 10 .

Interpreting the Data

Despite the fact that there was good participation, data for all pertinent variables should be considered simultaneously when the data is interpreted - especially where the sample size of a subgroup is extremely small.

Some respondents may have reported incomes considerably higher or lower than those of the remaining individuals in a subgroup. This would unduly influence the mean for some small subgroups. Therefore, wherever the sample is small and there is a considerable difference between the average and median in a line of data, greater weight should usually be given to the median than to the average.

Sometimes, the information reported in a line of data may appear to be inconsistent with that of related data lines. In such cases, the relative sample size of each line of data should be considered. Usually, more confidence should be placed in the line of data having the larger sample size. However, the "rule of reason" should govern.

As the definitions imply, one-half of respondents are paid more than the median, one-quarter more than the 75th percentile, and 10% more than the 90 th percentile. Naturally, length of service and individual capability play a large part in determining an individual's specific income level. Further, as a matter of policy, many employers deliberately set pay rates above the average to attract and retain the best possible employees. Therefore, the fact that an individual's salary is above some otherwise appropriate statistic need not be a matter of concern.

Executive Summary

As of March 31, 2012, the average total annual income of respondents in the survey was $\$ 103,497$ (including salaries, fees, cash bonuses, commissions, and profit received from the respondents' primary jobs during the preceding 12 -month period-but specifically excluding overtime pay).

Base salaries and incomes vary widely. As Exhibit 1 shows, survey respondents at or below the 10th percentile earn a base salary under $\$ 56,000$, while those at or above the 90 th percentile earn $\$ 144,000$ or more. Exhibit 2 shows that survey respondents at or below the 10th percentile earn a total annual income under $\$ 58,000$, while those at or above the 90th percentile earn $\$ 160,000$ or more.

Both Exhibits 1 and 2 indicate an increase in median base salary and total annual income from 2011 to 2012.

EXHIBIT 1: BASE SALARY STATISTICS
(ALL RESPONDENTS)

	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	\% Change in Base Salary from 2011
Number of Responses	11,388	12,720	
Average	$\$ 92,726$	$\$ 95,603$	3.1%
Percentile 10	$\$ 55,000$	$\$ 56,000$	1.8%
Percentile 25	$\$ 66,000$	$\$ 68,640$	4.0%
Median	$\$ 86,000$	$\$ 90,000$	4.7%
Percentile 75	$\$ 111,200$	$\$ 116,000$	4.3%
Percentile 90	$\$ 140,000$	$\$ 144,000$	2.9%

EXHIBIT 2: TOTAL ANNUAL INCOME STATISTICS
(ALL RESPONDENTS)

	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	\% Change in Total Income from 2011
Number of Responses	11,388	12,720	
Average	$\$ 99,738$	$\$ 103,497$	3.8%
Percentile 10	$\$ 56,700$	$\$ 58,000$	2.3%
Percentile 25	$\$ 68,500$	$\$ 71,000$	3.6%
Median	$\$ 90,000$	$\$ 94,117$	4.6%
Percentile 75	$\$ 120,000$	$\$ 124,523$	3.8%
Percentile 90	$\$ 154,000$	$\$ 160,000$	3.9%

A matched sample comparison is an excellent indicator of year-to-year changes in compensation as presented in Exhibits 3 and 4. These tables compare the compensation data of the 3,551 respondents who participated in both this and last years' survey. As indicated by these tables, the median total annual income increased 4.4%. Per Exhibit 4, a matched sample comparison of the last three years of survey data is presented. The percent change in median income from 2010 through 2012 is 8.0%.

EXHIBIT 3: TOTAL ANNUAL INCOME STATISTICS
(MATCHED SAMPLE) 2011-2012

	2011	\% Change in Total Income from 2011	
Number of Responses	3,551	3,551	
Average	$\$ 99,441$	$\$ 104,473$	5.1%
Percentile 10	$\$ 57,800$	$\$ 61,110$	5.7%
Percentile 25	$\$ 70,000$	$\$ 73,711$	5.3%
Median	$\$ 91,000$	$\$ 95,000$	4.4%
Percentile 75	$\$ 119,850$	$\$ 125,000$	4.3%
$\$ 150,000$	$\$ 158,000$	5.3%	

EXHIBIT 4: TOTAL ANNUAL INCOME STATISTICS
(MATCHED SAMPLE) 2010-2012

	2010	2011	2012	\% Change in Total Income from 2011
Number of Responses	1,832	1,832	1,832	
Average	\$100,603	\$103,474	\$108,558	7.9\%
Percentile 10	\$59,940	\$62,000	\$65,000	8.4\%
Percentile 25	\$72,050	\$75,000	\$78,450	8.9\%
Median	\$92,576	\$95,213	\$100,000	8.0\%
Percentile 75	\$119,000	\$122,000	\$129,265	8.6\%
Percentile 90	\$150,600	\$153,000	\$160,000	6.2\%

EXHIBIT 5: CHANGE IN MEDIAN TOTAL ANNUAL INCOME BY SUBREGION (MATCHED SAMPLE) 2011-2012

		2011	2012	\% Change in Total Income from 2011
	\# of Respondents	Median	Median	
New England	194	\$87,150	\$89,800	3.0\%
Middle Atlantic	530	\$91,000	\$95,715	5.2\%
Middle Southeast	387	\$91,500	\$95,000	3.8\%
Lower Southeast	240	\$99,110	\$100,000	0.9\%
Great Lakes	601	\$84,000	\$88,000	4.8\%
Central Plains	186	\$88,037	\$92,700	5.3\%
Upper Mountain	58	\$79,000	\$85,929	8.8\%
South Central	449	\$93,500	\$101,000	8.0\%
Lower Mountain	285	\$91,500	\$93,000	1.6\%
Pacific Northwest	194	\$90,500	\$93,000	2.8\%
Pacific Southwest	414	\$102,858	\$108,403	5.4\%

Income Trends

The following income trends section provides summary data for various scope factors. This data is representative of the data that was submitted between April 1, 2011, and March 31, 2012. During this time a total of 13,207 respondents completed the survey (of which 12,720 responses were used for this report). The most up-to-date income and salary statistics are available online.

Income and salary statistics are reported only where there are a minimum of 10 respondents for that row of data.

Length of Experience

Median income shows a consistent increase with increased engineering experience. Per Exhibit 6, the median income of full-time salaried respondents increases regularly from $\$ 55,000$ for those with under one year of experience to $\$ 127,800$ for those with 25 years of experience or more. This is a 132.4% spread.

Earnings differences increase with length of experience, greatest in the most experienced groups. The interquartile range (the middle 50%) is the best measure of the income range. For those with under one year experience, the inter-quartile range was $\$ 15,850$ compared to $\$ 53,500$ for those with 25 years of experience or more.

EXHIBIT 6: INCOME (\$) BY LENGTH OF EXPERIENCE

	All Respondents							Full-Time Salaried Only	
	\# of Responses	Mean	$\begin{aligned} & \text { 10th } \\ & \text { Pctl } \end{aligned}$	$\begin{aligned} & \text { 25th } \\ & \text { Pctl } \end{aligned}$	Median	75th Pctl	$\begin{aligned} & \text { 90th } \\ & \text { Pctl } \end{aligned}$	\# of Responses	Median
Under 1 year	366	56,785	41,000	48,000	55,000	63,850	74,000	366	55,000
1-2 years	762	60,688	45,000	51,000	58,678	67,500	78,000	761	58,695
3-4 years	1,161	67,325	50,835	56,515	64,750	74,000	87,000	1,159	64,750
5-9 years	2,319	78,457	57,500	65,000	75,000	87,000	102,000	2,306	75,000
10-14 years	1,706	95,783	67,100	78,575	91,610	108,000	129,000	1,669	91,520
15-19 years	1,323	111,621	75,000	88,688	106,000	127,000	155,000	1,297	106,000
20-24 years	1,302	123,267	80,000	95,600	116,345	140,000	176,800	1,274	116,270
25 or more years	3,781	136,942	87,243	104,500	127,700	158,000	200,000	3,613	127,800

Level of Education

The following table shows graphically median income by level of education attained. As is obvious, increased education in the engineering field results in higher earnings.

Full-time salaried respondents holding doctoral degrees in engineering have a median income of $\$ 116,000$. Those with an M.S. in engineering earn a median of $\$ 95,576$. Finally, those with a B.S. in engineering earn a median income of \$85,900.

Those holding a doctorate in engineering earn a median 35.0% more than those with a B.S. in engineering.
Full-time salaried survey respondents holding an M.B.A. or an M.B.A. and an M.A. or M.S. have higher median incomes than those holding an M.S. in engineering.

EXHIBIT 8: INCOME (\$) BY LEVEL OF EDUCATION

	All Respondents							Full-Time Salaried Only	
	\# of Responses	Mean	$\begin{aligned} & \text { 10th } \\ & \text { Pctl } \end{aligned}$	$\begin{aligned} & \text { 25th } \\ & \text { Pctl } \end{aligned}$	Median	75th Pctl	90th Pctl	\# of Responses	Median
Less than BA/BS Degree	113	98,160	53,000	69,805	92,600	115,540	161,500	111	92,600
BA Degree	57	93,882	53,700	60,000	76,309	109,500	163,000	56	75,805
BS Degree (non-engineering)	78	106,654	60,000	75,000	95,000	130,000	178,000	76	95,000
BS Degree (engineering)	6,798	96,452	55,000	66,000	86,000	115,000	148,500	6,670	85,900
MA/MS Degree (not MBA or engineering)	237	108,330	64,000	77,000	95,000	128,723	175,400	234	95,000
MBA Degree	570	126,681	75,000	93,630	117,000	150,000	188,500	556	116,250
MS Degree (engineering)	3,501	106,051	60,500	73,750	96,000	127,000	161,000	3,415	95,576
MBA and an MA or MS Degree	222	131,107	81,000	102,000	125,125	153,000	190,000	217	125,000
Doctorate (non-engineering)	37	133,639	78,000	102,000	126,500	162,000	189,000	33	120,000
Doctorate (engineering)	996	122,127	72,000	92,000	116,364	144,500	180,000	972	116,000

EXHIBIT 9: INCOME BY LEVEL OF EDUCATION (FULL-TIME SALARIED ONLY)

Level of Education and Length of Experience

Income by engineering experience versus level of education for three of the largest groups by degree held appears graphically and in tabular form in Exhibits 10 and 11.

The curves by full-time salaried median income for the B.S., M.S., and doctorate in engineering are fairly smooth and follow the expected relationship, with infrequent, minor anomalies.

The spreads of median income for the full-time salaried respondents with B.S., M.S., and doctorate in engineering between under one year of experience and 25 years or more of experience, are $126.6 \%, 125.9 \%$, and 69.0%, respectively.

EXHIBIT 10: INCOME BY DEGREE EARNED AND LENGTH OF EXPERIENCE (FULL-TIME SALARIED ONLY)

EXHIBIT 11: INCOME (\$) BY LEVEL OF EDUCATION AND LENGTH OF EXPERIENCE

Professional Responsibility

All survey participants were able to match their level of professional responsibility to one of the engineering grades defined in the Survey Questionnaire (see Appendix).

It should be noted that respondents' self-grading may not always be accurate, despite the detailed guidelines furnished in the survey instrument.

Exhibit 12 reports income by professional responsibility/engineering grade. The graph follows the shape expected, rising from a full-time salaried median income of $\$ 55,000$ for Engineer I to $\$ 150,000$ for Engineer VIII. This is a 172.7% spread.

EXHIBIT 12: INCOME (\$) BY PROFESSIONAL RESPONSIBILITY

	All Respondents							Full-Time Salaried Only	
	\# of Responses	Mean	$\begin{aligned} & \text { 10th } \\ & \text { PctI } \end{aligned}$	$\begin{aligned} & \text { 25th } \\ & \text { PctI } \end{aligned}$	Median	$\begin{aligned} & \hline \text { 75th } \\ & \text { PctI } \end{aligned}$	$\begin{aligned} & \text { 90th } \\ & \text { Pctl } \end{aligned}$	\# of Responses	Median
*Licensed Prof. Surveyor	12	97,408	60,000	67,500	78,500	120,500	165,000	10	78,500
Engineer Level I	421	55,967	42,000	48,000	55,000	61,500	69,600	421	55,000
Engineer Level II	633	61,211	46,500	52,000	59,500	68,000	78,500	631	59,500
Engineer Level III	1,046	64,659	49,000	55,000	62,235	71,000	83,000	1,046	62,235
Engineer Level IV	2,367	76,974	56,500	64,000	73,000	85,300	100,000	2,362	73,000
Engineer Level V	2,890	97,382	70,000	80,000	93,000	110,000	130,000	2,854	93,000
Engineer Level VI	2,595	121,060	85,000	98,500	115,000	136,000	164,000	2,532	115,000
Engineer Level VII	1,891	142,019	91,100	110,000	133,000	166,200	202,000	1,832	133,000
Engineer Level VIII	862	161,001	99,000	120,000	150,000	186,000	239,000	754	150,000

EXHIBIT 13: INCOME BY LEVEL OF PROFESSIONAL RESPONSIBILITY (FULL-TIME SALARIED ONLY)

Major Branch of Engineering

The highest full-time salaried median income by major branch of engineering goes to those respondents working in ocean $(\$ 169,000)$. This group is followed by those in cost management $(\$ 129,500)$, petroleum $(\$ 127,043)$, safety $(\$ 125,000)$, minerals and metals $(\$ 121,000)$, fire protection $(\$ 116,000)$, and electrical $(\$ 115,200)$.

At the other end of the full-time salaried median income spectrum are those employed in structural, agricultural, geotechnical, HVAC and refrigeration, civil, and transportation (all between $\$ 84,500$ and $\$ 87,850$).

Due to insufficient sample size, income statistics are not reported in Exhibit 14 for the following branches: ceramic, ergonomics, optical, plumbing, and pollution.

EXHIBIT 14: INCOME (\$) BY MAJOR BRANCH OF ENGINEERING

	All Respondents							Full-Time Salaried Only	
	\# of Responses	Mean	$\begin{aligned} & \text { 10th } \\ & \text { PctI } \end{aligned}$	$\begin{aligned} & \hline \text { 25th } \\ & \text { Pctl } \end{aligned}$	Median	$\begin{aligned} & \hline \text { 75th } \\ & \text { Pctl } \end{aligned}$	$\begin{aligned} & \text { 90th } \\ & \text { PctI } \end{aligned}$	\# of Responses	Median
Aeronautical/aerospace/astronautical	376	111,878	62,000	83,665	110,000	135,713	159,900	370	109,652
Agricultural	35	88,319	50,000	67,880	85,000	105,000	133,000	35	85,000
Architectural	37	114,741	50,300	62,000	97,500	142,000	210,000	34	95,750
Biomechanical/biomedical	131	107,695	52,000	75,000	101,000	130,248	172,000	125	101,000
Chemical	122	124,043	79,000	90,000	113,825	150,000	175,000	121	113,750
Civil	3,228	96,015	55,500	67,293	87,107	113,999	147,100	3,155	86,630
Coastal	46	97,654	52,000	63,345	89,050	115,000	168,000	46	89,050
Computer	21	125,796	84,000	96,000	111,000	138,900	189,000	21	111,000
Control systems	63	110,790	56,000	73,056	102,000	137,480	187,000	61	102,000
Corrosion	13	113,834	50,000	80,000	105,773	145,600	161,724	13	105,773
Cost management	35	135,493	73,200	90,000	130,000	182,000	205,714	34	129,500
Electrical	36	116,606	62,978	75,547	118,500	148,500	178,366	34	115,200
Electronics	61	117,126	59,000	71,500	105,000	142,000	200,000	61	105,000
Environmental	625	104,457	54,500	67,000	91,321	127,500	166,000	614	90,500
Facilities	174	121,040	72,000	91,500	111,620	140,472	185,450	171	111,000
Fire protection	24	114,534	60,000	74,200	107,000	157,250	184,000	23	116,000
Forensic	66	132,798	73,745	92,000	109,140	155,000	223,000	54	104,000
Geotechnical	646	96,808	56,000	67,947	85,500	111,000	154,500	631	85,065
Health care facility	15	87,732	50,000	55,000	99,000	110,000	118,027	15	99,000
HVAC and refrigeration	122	93,136	52,500	65,000	86,027	111,000	149,000	121	85,554
Industrial	105	103,438	56,300	65,400	91,500	128,000	168,725	102	91,500
Manufacturing	516	97,770	56,828	70,000	91,000	116,000	146,000	512	91,000
Marine	68	120,509	60,000	71,250	112,000	152,500	201,000	68	112,000
Materials	74	118,344	66,986	80,000	115,763	145,000	176,000	73	115,000
Mechanical	2,311	107,313	60,452	75,000	99,150	129,129	165,000	2,264	98,922
Metallurgy	29	121,050	67,000	90,000	110,000	140,000	180,000	29	110,000
Minerals and metals	15	128,669	62,000	80,500	121,000	162,000	207,000	15	121,000
Mining	27	111,911	52,000	65,000	110,000	135,000	195,000	27	110,000
Naval	25	99,323	58,240	65,000	95,850	127,451	140,000	25	95,850
Nuclear	200	116,240	66,220	82,000	113,650	137,500	164,250	197	112,364
Ocean	15	169,795	110,000	122,750	170,000	208,974	220,000	14	169,000
Petroleum	261	140,526	74,000	90,000	127,085	170,500	219,000	256	127,043
Plastics	22	118,172	48,500	54,900	99,550	153,000	220,000	22	99,550
Power or Utilities	521	118,303	69,500	86,500	114,000	140,000	171,000	513	114,000
Quality Assurance	99	99,142	51,712	67,360	94,980	120,000	160,000	98	94,990
Reliability	53	114,691	74,000	88,000	110,000	131,600	165,000	53	110,000
Robotics	22	99,466	53,000	62,000	86,536	118,500	159,000	21	91,700
Safety	36	127,724	65,380	93,800	120,000	152,450	179,000	35	125,000
Sanitary	48	111,323	63,000	82,892	111,652	130,926	151,545	48	111,652
Software	29	114,588	79,700	96,500	110,800	129,000	169,500	28	108,900
Structural	1,433	94,538	56,000	66,400	85,000	112,500	143,000	1,381	84,500
Systems	83	116,099	64,559	79,700	112,400	140,000	174,400	83	112,400
Transportation	796	96,636	57,400	67,650	88,000	115,000	149,000	786	87,850
Welding	34	102,470	42,000	78,642	97,000	125,000	148,000	34	97,000

EXHIBIT 15: INCOME BY MAJOR BRANCH OF ENGINEERING* (FULL-TIME SALARIED ONLY)

Job Function

Full-time salaried median annual income is highest for respondents in executive/administrative/legal job functions ($\$ 150,000$). This group is followed by those in sales/marketing/public relations $(\$ 114,500)$, and research \& development applications $(\$ 102,612)$.

Full-time salaried median incomes in not-for-profit/public service, production/quality management/ maintenance and others, instructional/higher education, and project management/engineering/operations ranges between \$93,880 and \$102,470.

The lowest full-time salaried median incomes are received by those in drafting/estimating ($\$ 54,400$), design ($\$ 73,300$), training/technical writing ($\$ 77,143$), planning/project study \& analysis/valuation/testing $(\$ 82,482)$, construction supervision $(\$ 85,100)$, and consulting $(\$ 89,000)$.

A graphical comparison of full-time salaried median incomes by job function appears in Exhibit 17.
EXHIBIT 16: INCOME (\$) BY JOB FUNCTION

	All Respondents							Full-Time Salaried Only	
	$\begin{gathered} \text { \# of } \\ \text { Responses } \end{gathered}$	Mean	$\begin{aligned} & \text { 10th } \\ & \text { Pctl } \end{aligned}$	$\begin{aligned} & \text { 25th } \\ & \text { Pctl } \end{aligned}$	Median	$\begin{aligned} & \text { 75th } \\ & \text { Pctl } \end{aligned}$	$\begin{aligned} & \text { 90th } \\ & \text { Pctl } \end{aligned}$	$\begin{gathered} \text { \# of } \\ \text { Responses } \end{gathered}$	Median
Construction Supervision	335	94,436	50,000	62,220	85,200	112,000	149,000	330	85,100
Consulting	2,342	103,534	56,980	69,500	90,727	125,000	167,000	2,175	89,000
Design	2,789	81,004	53,000	61,000	73,500	94,827	120,000	2,763	73,300
Drafting/Estimating	57	63,886	40,000	45,000	55,000	66,980	105,000	56	54,000
Executive/Administrative/Legal	600	162,927	99,647	118,000	150,000	190,600	248,750	579	150,000
Instructional/Higher Education	277	110,105	66,177	79,350	102,000	136,000	168,000	277	102,000
Not-for-profit/Public Service	291	96,018	61,000	74,109	93,880	113,630	139,512	291	93,880
Other	329	108,552	60,000	80,000	102,000	131,000	161,000	326	102,000
Planning/Project Study \& Analysis/Valuation/Testing	266	91,405	52,000	64,000	82,996	110,800	140,000	264	82,482
Production/Quality Management/ Maintenance and others	487	103,954	58,000	74,000	98,000	123,000	160,000	487	98,000
Project Management/Engineering/ Operations	3,862	110,548	65,500	82,000	102,500	130,112	162,100	3,830	102,470
Research \& Development/Applications	876	108,559	60,000	76,872	103,000	133,450	160,000	863	102,612
Sales/Marketing/Public Relations	174	120,017	70,000	92,200	114,750	140,000	180,000	169	114,500
Training/Technical Writing	35	86,932	50,000	67,828	77,143	108,500	134,000	35	77,143

EXHIBIT 17: INCOME BY JOB FUNCTION (FULL-TIME SALARIED ONLY)

Industry or Service of Employer

The highest full-time salaried median incomes of the 27 industry groups studied were received by respondents employed by those in petroleum/natural gas products ($\$ 120,000$), utilities - pipelines ($\$ 110,500$), utilities - gas $(\$ 108,850)$, and utilities - electric $(\$ 108,369)$.

Those receiving the lowest full-time salaried median incomes are employed by a private practice $(\$ 84,032)$, transportation services $(\$ 84,330)$, state government $(\$ 85,000)$, fabricated metal products $(\$ 85,500)$, and transportation equipment $(\$ 87,333)$.

EXHIBIT 18: INCOME (\$) BY INDUSTRY OR SERVICE OF EMPLOYER

	All Respondents							Full-Time Salaried Only	
	\# of Responses	Mean	$\begin{aligned} & \text { 10th } \\ & \text { Pctl } \end{aligned}$	$\begin{aligned} & \text { 25th } \\ & \text { PctI } \end{aligned}$	Median	$\begin{aligned} & \text { 75th } \\ & \text { PctI } \end{aligned}$	$\begin{aligned} & \text { 90th } \\ & \text { PctI } \end{aligned}$	\# of Responses	Median
Aerospace/aircraft products	436	109,284	62,000	78,750	104,487	131,750	159,400	434	104,487
Chemical, pharmaceutical and allied products	312	114,635	68,250	81,119	104,150	140,500	173,500	310	104,150
Coal products	22	100,744	61,000	73,500	106,151	126,000	131,000	22	106,151
Colleges and universities	388	106,747	57,500	75,000	100,000	136,000	165,000	388	100,000
Communication services	17	106,500	48,500	83,000	97,000	127,000	200,000	17	97,000
Construction and real estate development	446	105,191	55,500	67,210	92,000	132,357	170,000	436	91,700
Electrical and electronics equipment	370	108,529	60,000	76,000	100,582	130,000	170,000	367	100,663
Fabricated metal products	381	94,433	52,500	65,500	85,500	115,900	145,000	379	85,500
Food/Beverage/Tobacco products	65	118,536	53,000	70,600	107,000	141,602	200,059	64	106,300
Government - Federal	614	104,275	60,400	77,000	101,000	128,000	150,300	613	101,000
Government - Local	727	96,989	59,620	76,500	93,120	113,381	140,000	722	92,950
Government - State	366	88,279	51,960	66,227	85,033	105,228	126,000	365	85,000
Machinery (except electrical)	431	101,193	59,800	71,500	93,000	120,000	153,000	425	93,000
Other manufacturing	418	102,737	59,000	71,500	95,377	125,000	156,000	414	95,877
Other non-manufacturing	298	116,002	60,000	81,000	105,000	138,300	185,000	294	105,000
Petroleum/Natural gas products	543	135,382	70,500	89,000	120,200	169,367	214,000	537	120,000
Primary metal industries	80	105,606	56,900	71,950	95,000	125,000	171,500	78	94,500
Private Practice	4,836	97,363	55,120	66,000	85,000	116,270	153,000	4,633	84,032
Research Organizations and Laboratories	237	112,234	62,196	84,000	110,000	135,236	165,000	231	108,204
Rubber and plastic products	97	100,915	54,000	75,000	92,500	125,000	149,000	97	92,500
Stone/Clay/Glass/Concrete Products	60	106,019	64,500	74,368	98,586	123,000	150,250	59	97,550
Transportation equipment	282	95,999	57,700	68,000	87,667	114,000	142,000	279	87,333
Transportation services	161	97,552	53,000	62,800	85,000	113,500	158,000	158	84,330
Utilities - Electric	644	114,770	70,084	85,000	109,000	135,000	165,000	639	108,369
Utilities - Gas	84	116,338	73,000	85,500	108,850	131,200	175,000	84	108,850
Utilities - Other or mixed	286	112,453	65,484	78,000	101,711	135,000	167,500	283	101,421
Utilities - Pipeline	119	123,650	61,500	80,500	110,500	158,800	190,000	117	110,500

EXHIBIT 19: INCOME BY INDUSTRY OR SERVICE OF EMPLOYER (FULL-TIME SALARIED ONLY)

Licensing and Certification Status

The vast majority of full-time respondents (54.1\%) are PEs who do not hold other licenses, 0.8% are PEs certified in environmental engineering, 0.1% are PEs certified in forensic engineering, 2.3% are PEs certified in some other engineering specialty, 0.9% are PEs and professional or land surveyors, and 1.7% are PEs in some other licensed profession). Engineers-in-training/engineer interns comprise 22.4% of the sample, while professional land surveyors comprise 0.02% of the sample. The remaining participants are neither registered nor certified.

Exhibit 20 reports income by licensing-certification status. Those full-time salaried respondents who are professional engineers in some other licensed profession $(\$ 116,000)$. Following them are PEs certified in environmental engineering ($\$ 111,550$), PEs who are also a professional surveyor or land surveyor $(\$ 111,250)$, PEs certified in some other engineering specialty ($\$ 110,300$), and PEs who do not hold other licenses $(\$ 100,000)$. Unlicensed engineers have a median income of \$95,500 and engineers-in-training/engineer interns of \$68,450.

EXHIBIT 20: INCOME (\$) BY LICENSING OR CERTIFICATION STATUS

EXHIBIT 21: INCOME BY LICENSING OR CERTIFICATION STATUS (FULL-TIME SALARIED ONLY)

Supervisory Responsibility

Supervisory responsibility plays an important part in determining income, and 50.3% of full-time respondents have supervisory or managerial responsibility.

Income increases regularly with increased supervisory/managerial responsibility. As one might expect, supervision of engineers and other professionals results in higher earnings than does supervision of subprofessional personnel, given the same number of subordinates.

Full-time salaried engineers in nonsupervisory positions have a median income of $\$ 78,500$, while the median income of those supervising/managing one or two professionals (e.g., engineers, scientists, or technologists) increases regularly from $\$ 94,000$ to $\$ 169,000$ for those who direct the activities of 50 -plus professionals.

Full-time salaried engineers supervising both professionals and nonprofessionals result in a similar progression in median income from $\$ 89,000$ for those supervising one to four subordinates to $\$ 177,500$ for the group that manages 250 or more such subordinates.

This data is displayed in Exhibits 22 and 23.

EXHIBIT 22: INCOME (\$) BY SUPERVISORY RESPONSIBILITY

	All Respondents							Full-Time Salaried Only	
	\#of Responses	Mean	$\begin{aligned} & \text { 10th } \\ & \text { Pctl } \end{aligned}$	$\begin{aligned} & \text { 25th } \\ & \text { Pctl } \end{aligned}$	Median	$\begin{aligned} & \hline \text { 75th } \\ & \text { PctI } \end{aligned}$	$\begin{aligned} & \text { 90th } \\ & \text { Pctl } \end{aligned}$	\#of Responses	Median
No supervisory responsibility	5,703	87,689	53,000	62,400	79,000	104,814	134,200	5,619	78,500
1-2 professionals supervised	495	100,501	66,300	77,000	94,000	115,540	144,000	483	94,000
3-4 professionals supervised	690	106,797	69,725	83,362	100,240	123,593	149,900	669	100,000
5-9 professionals supervised	893	119,404	82,680	95,000	113,000	136,000	166,000	881	113,000
10-49 professionals supervised	889	144,922	97,000	115,000	136,500	167,000	202,000	877	136,000
50 or more professionals supervised	191	182,631	113,600	138,000	169,000	212,400	265,000	189	169,000
1-2 non-professionals supervised	233	79,595	53,751	63,500	73,000	90,834	112,000	226	72,500
3-4 non-professionals supervised	213	81,934	56,500	64,078	74,000	93,333	115,000	209	74,000
5-9 non-professionals supervised	181	85,779	52,200	63,000	77,501	100,000	129,000	181	77,501
10-49 non-professionals supervised	197	101,064	58,000	70,000	92,300	120,000	151,572	194	92,045
50 or more non-professionals supervised	49	132,176	75,000	100,000	124,800	158,000	200,000	49	124,800
1-4 professionals and non-professionals supervised	481	96,712	64,000	76,000	89,000	113,000	136,300	456	89,000
5-9 professionals and non-professionals supervised	403	109,919	70,000	84,433	102,000	125,736	157,000	389	102,000
10-49 professionals and non-professionals supervised	633	130,635	81,369	99,216	120,000	150,000	198,000	608	119,000
50-99 professionals and non-professionals supervised	113	153,006	102,000	114,304	140,000	183,500	220,000	111	140,000
100-249 professionals and nonprofessionals supervised	77	166,124	100,000	125,000	152,800	200,000	251,000	75	152,800
250 or more professionals and non-professionals supervised	42	201,575	120,000	149,000	177,500	220,000	305,000	42	177,500

EXHIBIT 23: INCOME BY SUPERVISORY RESPONSIBILITY (FULL-TIME SALARIED ONLY)

Sub-Regions

Exhibit 24 reports income by geographic sub-region (with sub-regions including metropolitan areas surveyed). As the data indicate, the highest median incomes are in the Pacific Southwest States $(\$ 104,061)$, the South Central States $(\$ 101,000)$, and the Middle Atlantic States $(\$ 95,000)$. The lowest full-time salaried median incomes are found in the Upper Mountain States $(\$ 80,878)$, the Great Lakes States $(\$ 86,067)$ and the Central Plains States $(\$ 88,000)$.

The online report also includes the ability to select data by state, major metropolitan area, zip code, and the following regions:

- North Central: Central Plains, Great Lakes, and Upper Mountain States
- North East: Middle Atlantic and New England States
- South Central: Lower Mountain and South Central States
- South East: Lower Southeast and Middle Southeast States
- West Coast: Pacific Northwest and Pacific Southwest States

EXHIBIT 24: MEDIAN ANNUAL INCOME BY SUB-REGION—METROPOLITAN AREAS INCLUDED (FULL-TIME SALARIED ONLY)

EXHIBIT 25: INCOME (\$) BY SUB-REGION
(METROPOLITAN AREAS INCLUDED)

	All Respondents							Full-Time Salaried Only	
	\# of Responses	Mean	$\begin{aligned} & \text { 10th } \\ & \text { Pctl } \end{aligned}$	$\begin{aligned} & \text { 25th } \\ & \text { PctI } \end{aligned}$	Median	$\begin{aligned} & \hline \text { 75th } \\ & \text { PctI } \end{aligned}$	$\begin{aligned} & \text { 90th } \\ & \text { PctI } \end{aligned}$	\# of Responses	Median
New England	786	99,376	55,800	68,000	91,172	118,833	157,000	761	91,000
Middle Atlantic	1,854	102,845	57,200	70,000	95,000	124,000	157,350	1,823	95,000
Middle Southeast	1,447	102,859	58,000	71,390	94,422	124,575	160,000	1,415	94,200
Lower Southeast	950	100,895	55,630	68,200	93,850	122,750	151,000	928	93,000
Great Lakes	2,045	95,486	55,825	68,000	86,958	114,264	143,000	2,014	86,067
Central Plains	654	95,998	56,480	67,000	88,520	117,000	145,000	644	88,000
Upper Mountain	183	88,335	52,000	63,654	82,000	107,000	135,539	173	80,878
South Central	1,656	116,198	61,105	76,000	102,000	140,000	190,000	1,622	101,000
Lower Mountain	908	101,489	58,500	72,000	93,000	121,860	150,500	890	92,729
Pacific Northwest	696	100,619	60,000	71,500	93,000	119,457	151,000	681	92,227
Pacific Southwest	1,423	114,042	65,000	80,000	104,814	138,796	176,328	1,384	104,061

Exhibit 27 graphically displays the 10 highest full-time salaried median incomes by metropolitan area. As Exhibit 26 shows, when full-time salaried median income data by sub-region are analyzed excluding the metropolitan areas that are presented in Exhibit 27, the highest median incomes are in the Pacific Southwest States $(\$ 101,000)$ and the Middle Atlantic States ($\$ 93,775$).

EXHIBIT 26: INCOME (\$) BY SUB-REGION
(TEN HIGHEST METROPOLITAN AREAS EXCLUDED)

	All Respondents							Full-Time Salaried Only	
	\# of Responses	Mean	$\begin{aligned} & \text { 10th } \\ & \text { Pctl } \end{aligned}$	$\begin{aligned} & \text { 25th } \\ & \text { Pctl } \end{aligned}$	Median	$\begin{aligned} & \text { 75th } \\ & \text { Pct } \end{aligned}$	$\begin{aligned} & \text { 90th } \\ & \text { Pctl } \end{aligned}$	\# of Responses	Median
New England	786	99,376	55,800	68,000	91,172	118,833	157,000	761	91,000
Middle Atlantic	1,702	101,069	56,800	69,729	94,000	120,000	154,000	1,674	93,775
Middle Southeast	1,190	98,944	57,000	70,000	90,500	120,000	151,003	1,166	90,425
Lower Southeast	900	100,349	55,560	68,132	92,543	120,493	152,750	879	92,000
Great Lakes	2,045	95,486	55,825	68,000	86,958	114,264	143,000	2,014	86,067
Central Plains	654	95,998	56,480	67,000	88,520	117,000	145,000	644	88,000
Upper Mountain	183	88,335	52,000	63,654	82,000	107,000	135,539	173	80,878
South Central	1,043	105,003	57,900	70,500	93,000	125,000	168,000	1,016	92,500
Lower Mountain	908	101,489	58,500	72,000	93,000	121,860	150,500	890	92,729
Pacific Northwest	682	100,430	60,000	71,000	92,760	118,956	151,300	668	92,077
Pacific Southwest	1,131	111,085	64,230	77,000	102,000	135,000	168,000	1,099	101,000

EXHIBIT 27: 10 HIGHEST INCOMES BY METROPOLITAN AREA (FULL-TIME SALARIED ONLY)

Metropolitan Area

For this analysis, only those metropolitan areas with a minimum of 10 full-time salaried respondents are included. The highest full-time salaried median income is found in Bakersfield, CA ($\$ 129,000$); Brazoria, TX $(\$ 125,850)$; Bellingham, WA ($\$ 120,000$); Houston, TX $(\$ 120,000)$; Huntsville, AL ($\$ 117,700$); Vallejo-Fairfield-Napa, CA ($\$ 117,500$); Washington, DC-MD-VA-WV $(\$ 116,871)$; San Jose, CA $(\$ 116,372)$; Orange County, CA ($\$ 115,000$); and Middlesex-Somerset-Hunterdon, $\mathrm{NJ}(\$ 113,968)$.

The lowest full-time salaried median incomes found in this study are in Burlington, VT $(\$ 56,040)$; Iowa City, IA ($\$ 58,800$); Savannah, GA $(\$ 64,950)$; Erie, PA $(\$ 65,000)$; and Duluth-Superior, MN-WI $(\$ 66,700)$.

The full-time salaried median incomes in the remaining metropolitan areas surveyed range from $\$ 67,080$ to $\$ 113,000$.

EXHIBIT 28: INCOME (\$) BY METROPOLITAN AREA

	All Respondents							Full-Time Salaried Only	
	$\begin{gathered} \text { \# of } \\ \text { Responses } \end{gathered}$	Mean	10th Pctl	25th Pctl	Median	75th Pctl	90th Pctl	$\begin{gathered} \text { \# of } \\ \text { Responses } \end{gathered}$	Median
Akron, OH	47	103,158	68,000	80,000	98,100	127,000	137,500	46	98,050
Albany-Schenectady-Troy, NY	90	94,209	53,490	65,000	92,378	115,000	133,836	88	90,478
Albuquerque, NM	53	105,609	62,150	78,000	100,200	136,000	149,000	52	101,629
Allentown-Bethlehem-Easton, PA	43	93,793	53,664	64,300	76,000	110,120	147,300	43	76,000
Amarillo, TX	13	97,514	63,759	69,000	89,022	123,000	148,500	13	89,022
Anchorage, AK	73	109,746	62,400	74,298	104,064	132,500	160,000	73	104,064
Ann Arbor, Ml	41	111,654	53,000	66,546	98,565	153,000	187,000	40	98,383
Appleton-Oshkosh-Neenah, WI	18	90,746	56,500	78,000	85,000	96,058	150,000	18	85,000
Atanta, GA	180	108,307	59,650	71,250	100,000	130,500	170,882	173	100,000
Augusta-Aiken, GA-SC	19	100,470	49,900	66,000	95,000	125,000	150,111	19	95,000
Austin-San Marcos, TX	119	105,142	58,300	72,500	86,000	126,000	177,000	114	85,250
Bakersfield, CA	21	143,606	90,000	99,500	127,000	180,880	228,000	20	129,000
Baltimore, MD	158	104,908	64,501	77,000	99,917	126,000	159,000	155	100,000
Baton Rouge, LA	78	99,297	59,100	73,500	90,115	115,000	145,000	77	92,000
Beaumont-PortArthur, TX	13	119,461	64,126	73,800	110,000	150,000	174,500	13	110,000
Bellingham, WA	14	109,844	72,000	80,000	119,750	129,000	140,000	13	120,000
Bergen-Passaic, NJ	50	108,257	67,000	75,000	110,638	127,500	156,000	50	110,638
Billings, MT	12	83,311	55,000	62,000	80,500	103,500	114,581	12	80,500
Bimingham, AL	67	105,634	60,000	69,500	100,000	138,000	162,000	67	100,000
Boise City, ID	43	90,824	52,500	63,000	86,500	113,463	135,539	42	86,700
Boston, MA-NH	277	99,802	56,000	69,000	89,895	121,000	160,500	267	88,301
Boulder-Longmont, CO	31	108,031	70,000	77,056	111,500	128,600	144,876	31	111,500
Brazoria, TX	14	134,521	94,000	102,000	125,850	165,000	202,000	14	125,850
Bremerton, WA	11	116,026	61,505	62,000	84,619	114,496	280,000	11	84,619
Bridgeport, CT	15	99,720	55,500	70,000	99,000	117,000	150,000	15	99,000
Bryan-College Station, TX	17	100,073	60,000	86,200	95,840	116,000	129,000	16	95,420
Buffalo-Niagara Falls, NY	52	89,821	53,000	62,568	86,670	105,500	136,000	52	86,670
Burlington, VT	17	75,383	44,500	47,677	58,000	106,202	110,000	16	56,040
Canton-Massillon, OH	12	88,699	51,833	57,830	84,548	102,810	126,500	12	84,548
Cedar Rapids, IA	13	98,403	65,000	73,200	84,790	119,257	154,600	12	87,448

EXHIBIT 28: INCOME (\$) BY METROPOLITAN AREA

	All Respondents							Full-Time Salaried Only	
	$\begin{gathered} \text { \# of } \\ \text { Responses } \end{gathered}$	Mean	10th PctI	25th Pctl	Median	75th Pctl	90th Pctl	$\begin{array}{\|c\|} \hline \text { \# of } \\ \text { Responses } \end{array}$	Median
Champaign-Urrana, IL	12	105,764	58,822	73,684	90,850	149,500	172,000	12	90,850
Charleston, SC	41	100,971	58,800	73,000	91,600	120,000	150,000	39	91,600
Charleston, WV	21	105,976	49,088	63,000	81,000	118,800	169,000	21	81,000
Charlotte-Gastonia-Rock Hill, NC-SC	128	105,420	61,360	72,819	99,000	122,075	171,000	126	99,000
Charottesville, VA	16	89,805	63,000	69,027	77,750	101,000	120,000	15	76,500
Chattanooga, TN-GA	41	104,352	70,370	75,300	90,000	124,800	163,000	40	91,500
Chicago, IL	385	101,665	60,000	71,000	93,000	123,000	159,000	381	93,000
Cincinnati, OH-KY-IN	81	93,043	52,000	61,000	89,700	118,000	140,000	78	88,850
Cleveland-Lorain-Elyria, OH	105	92,391	59,000	72,600	88,000	106,000	131,500	104	88,250
Colorado Springs, CO	34	95,018	57,100	77,900	92,500	110,000	148,653	34	92,500
Columbia, SC	26	105,646	59,085	73,200	92,950	125,000	154,300	26	92,950
Columbus, OH	108	98,492	54,000	70,360	87,900	118,200	154,000	105	87,700
Corpus Christi, TX	17	123,124	62,400	65,000	104,000	134,000	291,500	16	97,000
Corvalis, OR	12	105,560	67,000	80,950	93,500	122,209	142,000	12	93,500
Dallas, TX	165	106,111	55,500	71,000	95,000	120,000	166,000	161	95,000
Davenport-Moline-Rock Island, IA-IL	18	77,762	50,000	60,320	72,092	94,000	110,000	18	72,092
Dayton-Springfield, OH	42	95,875	59,160	72,500	92,897	115,000	130,000	41	88,554
Denver, Co	248	103,981	57,623	71,978	95,000	125,000	162,000	243	95,000
Des Moines, IA	39	80,121	51,000	64,400	77,500	93,000	106,000	39	77,500
Detroit, MI	120	100,233	56,000	72,350	90,000	122,000	156,450	117	90,000
Duluth-Superior, MN-WI	20	85,017	48,294	52,000	66,700	81,406	172,500	20	66,700
ElPaso, TX	10	141,704	49,325	64,000	110,750	222,000	292,500	10	110,750
Ene, PA	15	75,993	54,000	57,000	65,000	100,000	126,500	15	65,000
Evansville-Henderson, IN-KY	21	87,703	50,856	63,000	74,963	105,400	150,000	21	74,963
Flagstaft, AZ-UT	16	76,992	46,800	51,762	67,080	82,500	108,530	16	67,080
Fort Collins-Loveland, CO	47	96,307	60,000	65,000	82,806	114,000	142,000	45	82,806
Fort Lauderdale, FL	28	106,319	62,500	72,400	92,500	134,726	155,000	28	92,500
Fort Pierce-Port St. Lucie, FL	13	103,344	63,500	69,000	102,586	124,000	168,000	13	102,586
Fort Wayne, IN	22	78,856	54,230	60,500	74,250	90,000	116,500	22	74,250
Fort Worth-Arington, TX	91	99,733	56,000	62,000	86,630	127,049	167,000	87	86,630
Fresno, CA	23	93,972	61,800	74,000	87,000	107,580	128,900	23	87,000
Gainesville, FL	17	98,901	50,250	65,000	100,000	129,817	154,000	17	100,000
Galveston-Texas City, TX	13	148,382	74,880	96,000	131,800	177,000	240,000	11	110,000
Gary, IN	22	109,359	60,000	77,000	112,259	132,600	141,000	22	112,259
Grand Rapids-Muskegon-Holland, MI	41	88,744	61,650	71,136	80,300	98,843	130,000	40	80,384
Green Bay, WI	16	92,142	50,528	61,523	72,800	107,572	123,300	16	72,800
Greensboro-Winston Salem-High Point, NC	24	111,240	69,000	83,500	98,452	137,750	147,760	24	98,452
Greenville-Spartanburg-Anderson, SC	79	100,546	58,500	73,000	87,480	122,800	159,400	79	87,480
Hamilton-Middletown, OH	11	111,095	72,000	80,000	104,000	139,500	180,845	11	104,000
Harisburg-Lebanon-Carisle, PA	51	84,143	52,500	64,000	79,083	95,000	116,000	48	79,042
Hartford, CT	103	106,850	60,320	75,500	104,000	131,300	155,000	101	104,000
Honolulu, HI	44	101,621	65,440	78,177	93,000	120,450	150,000	44	93,000

EXHIBIT 28: INCOME (\$) BY METROPOLITAN AREA

EXHIBIT 28: INCOME (\$) BY METROPOLITAN AREA

EXHIBIT 28: INCOME (\$) BY METROPOLITAN AREA

	All Respondents							Full-Time Salaried Only	
	$\begin{gathered} \text { \# of } \\ \text { Responses } \end{gathered}$	Mean	10th Pctl	25th Pctl	Median	75th Pctl	90th Pctl	\# of Responses	Median
South Bend, IN	16	82,446	55,200	62,500	79,442	98,570	110,000	16	79,442
Spokane, WA	28	86,825	50,500	64,379	85,125	104,288	120,000	28	85,125
Springfield, IL	13	104,620	61,180	75,480	112,000	131,246	140,000	13	112,000
Springfield, MA	22	94,593	45,000	60,000	90,250	108,000	130,000	22	90,250
Springfield, MO	11	88,816	56,250	71,000	82,000	100,480	136,000	10	84,296
St. Louis, MO-IL	147	102,094	57,000	68,000	91,500	126,500	158,000	145	91,000
State College, PA	12	102,742	56,000	71,000	96,350	134,378	160,120	12	96,350
Syracuse, NY	51	107,336	53,000	61,360	85,650	126,000	170,000	50	85,325
Tacoma, WA	19	91,885	59,000	70,000	84,500	105,200	120,000	19	84,500
Tallahassee, FL	10	88,035	42,000	53,000	76,675	103,000	173,500	10	76,675
Tampa-St. Petersburg-Clearwater, FL	94	93,133	54,100	67,981	85,450	108,868	147,000	92	85,000
Toledo, OH	26	109,508	60,000	72,500	103,150	127,000	189,000	26	103,150
Trenton, NJ	32	106,335	69,000	80,948	103,806	129,200	155,000	32	103,806
Tucson, AZ	45	94,473	55,000	66,500	81,060	112,400	146,000	44	80,530
Tulsa, OK	52	103,707	59,000	73,150	93,750	121,356	154,000	51	93,000
Tyler, TX	19	101,941	55,000	60,000	82,320	132,000	150,000	19	82,320
Vallejo-Fairifild-Napa, CA	15	114,663	75,000	94,000	117,500	131,500	159,000	15	117,500
Ventura, CA	21	124,928	78,508	86,000	106,000	150,000	198,000	18	105,407
Washington, DC-MD-VA-W	356	121,992	63,000	83,088	117,830	147,250	178,000	346	116,871
West Palm Beach-Boca Raton, FL	52	103,289	63,504	82,241	99,400	117,500	140,000	50	99,400
Wichita, Ks	18	101,592	60,320	71,000	102,067	119,200	146,000	17	94,134
Wilmington, NC	15	104,510	50,000	70,000	104,000	128,000	137,000	15	104,000
Wilmington-Newark, DE-MD	30	113,926	67,750	93,900	113,000	144,000	157,793	30	113,000
Worcester, MA-CT	21	97,932	66,620	80,330	99,680	110,100	136,000	21	99,680
York, PA	17	88,389	57,950	65,000	80,000	106,700	147,424	17	80,000

Gender

The median income of female engineers $(\$ 76,984)$ is 80.2% of that of male engineers $(\$ 96,000)$.

EXHIBIT 29: INCOME (\$) BY GENDER

	All Respondents							Full-Time Salaried Only	
	\# of Responses	Mean	$\begin{aligned} & \text { 10th } \\ & \text { PctI } \end{aligned}$	$\begin{aligned} & \text { 25th } \\ & \text { Pctl } \end{aligned}$	Median	$\begin{aligned} & \hline \text { 75th } \\ & \text { PctI } \end{aligned}$	$\begin{aligned} & \text { 90th } \\ & \text { PctI } \end{aligned}$	$\begin{gathered} \text { \# of } \\ \text { Responses } \end{gathered}$	Median
Male	11,173	105,616	58,660	72,600	96,500	127,000	163,000	10,927	96,000
Female	1,314	85,243	53,500	62,530	77,000	99,000	129,000	1,295	76,984

When data is analyzed by length of experience, female engineers have a higher median income than male engineers with under 2 years of experience. With all other lengths of experience, male engineers have higher median incomes. Comparison of the income by gender in the remaining groups revealed that female engineers with 3-4 years' experience received 98.2% as much as male engineers, 94.9% with $5-9$ years, 92.4% with $10-14$ years, 86.8% with $15-19$ years, 93.9% with $20-24$ years, and 90.7% with 25 or more years of experience.

EXHIBIT 30: INCOME (\$) BY GENDER VS. LENGTH OF EXPERIENCE (FULL-TIME SALARIED ONLY)

	Male Respondents		Female Respondents	
	\# of Respondents	Median	\# of Respondents	Median
Under 1 year	306	55,000	57	58,700
$1-2$ years	635	58,695	116	59,000
$3-4$ years	945	64,880	192	63,732
5-9 years	1,901	75,106	368	71,250
$10-14$ years	1,454	92,022	188	85,000
15-19 years	1,169	107,050	105	92,950
$20-24$ years	1,160	116,623	86	109,500
25 or more years	3,357	128,200	183	116,276

EXHIBIT 31: INCOME BY GENDER VS. LENGTH OF EXPERIENCE (FULL-TIME SALARIED ONLY)

When analyzed still further, by length of experience and level of education simultaneously, much of the same relationship was found.

Tabular comparisons of median income by gender versus education and experience simultaneously in Exhibit 32.

EXHIBIT 32: INCOME (\$) BY GENDER VS. LEVEL OF EDUCATION AND LENGTH OF EXPERIENCE (FULL-TIME SALARIED ONLY)

	Male Respondents		Female Respondents	
	\# of Responses	Median	\# of Responses	Median
BS Degree (engineering)				
Under 1 year	206	53,000	34	55,000
1-2 years	432	57,000	76	58,120
3-4 years	637	63,500	114	61,570
5-9 years	1,097	73,000	194	68,250
10-14 years	795	90,000	98	82,400
15-19 years	577	102,425	56	87,500
20-24 years	582	110,872	43	109,000
25 or more years	1,564	123,000	62	110,175
MS Degree (engineering)				
Under 1 year	76	57,625	17	61,000
1-2 years	152	60,397	28	60,001
3-4 years	220	66,124	59	66,227
5-9 years	534	77,533	127	74,700
10-14 years	409	92,029	60	89,050
15-19 years	338	110,000	26	98,000
20-24 years	310	120,000	22	114,075
25 or more years	900	131,500	67	124,000
Doctorate (engineering)				
Under 1 year	13	84,000	4	--
1-2 years	35	75,000	6	--
3-4 years	43	85,000	11	99,600
5-9 years	108	96,662	21	80,000
10-14 years	112	103,750	10	92,250
15-19 years	113	125,000	11	102,000
20-24 years	111	125,000	14	99,049
25 or more years	317	141,756	21	142,000

Ethnic Origin

To the degree that the data in this year's survey permit, some comparisons will be made regarding ethnic origin.
EXHIBIT 33: INCOME (\$) BY ETHNIC ORIGIN

	All Respondents							Full-Time Salaried Only	
	\# of Responses	Mean	10th Pct	$\begin{aligned} & \text { 25th } \\ & \text { Pctl } \end{aligned}$	Median	$\begin{aligned} & \text { 75th } \\ & \text { PctI } \end{aligned}$	90th Pctl	\# of Responses	Median
American Indian or Alaskan Native	43	97,098	64,000	70,000	87,500	112,000	133,000	43	87,500
Asian or Pacific Islander	744	102,846	58,000	72,400	95,000	122,000	154,500	737	95,000
Black	172	97,449	55,000	64,675	88,000	118,000	150,000	171	88,000
Hispanic	469	94,601	54,000	65,000	85,000	113,000	142,500	460	85,000
White (not of Hispanic origin)	10,582	103,844	58,000	71,000	94,600	125,000	161,000	10,345	94,000
Other	162	100,950	58,510	70,000	94,890	124,000	152,000	159	94,100

The sample was limited to respondents who are employed full-time as salaried employees and analyzed by length of experience and level of education simultaneously versus ethnic origin of respondent.

Resulting data are displayed in Exhibit 34.
The sample sizes for American Indian/Alaskan Native respondents were too small to produce an education versus length of experience cell with more than 10 respondents.

With the primary exception of White respondents, caution should be used with any statistical conclusions made based upon origin versus level of education and length of experience due to the small sample sizes for the cells. However, there were certain trends that became apparent within this level of analysis.

EXHIBIT 34: INCOME (\$) BY ORIGIN VS. HIGHEST DEGREE EARNED AND LENGTH OF EXPERIENCE (FULL-TIME SALARIED ONLY)

Organization Size

Overall, full-time salaried median income shows an increase from smaller organizations to larger organizations, based on employee size. Per Exhibit 35, the median income increases from $\$ 83,932$ for those in organizations with less than 200 employees to $\$ 107,245$ for those in organizations with 20,000 employees and over.

EXHIBIT 35: INCOME (\$) BY ORGANIZATION SIZE (NUMBER OF EMPLOYEES)									
	All Respondents							Full-Time Salaried Only	
	\# of Responses	Mean	$\begin{aligned} & \text { 10th } \\ & \text { PctI } \end{aligned}$	$\begin{aligned} & \text { 25th } \\ & \text { Pctl } \end{aligned}$	Median	$\begin{aligned} & \hline \text { 75th } \\ & \text { PctI } \end{aligned}$	$\begin{aligned} & \text { 90th } \\ & \text { Pctl } \end{aligned}$	\# of Responses	Median
Under 200	4,055	95,901	53,000	65,000	85,000	114,000	150,000	3,796	83,932
200-499	1,636	97,522	56,400	68,120	88,530	117,510	147,000	1,630	88,530
500-999	988	101,962	60,000	72,000	94,500	121,240	154,000	985	94,200
1,000-1,999	829	105,203	60,500	75,400	98,009	123,509	160,000	828	98,426
2,000-4,999	1,261	108,325	61,325	76,066	100,000	128,301	165,740	1,260	100,000
5,000-9,999	894	111,748	64,350	79,000	105,000	132,622	164,000	894	105,000
10,000-19,999	814	110,806	64,000	76,800	102,239	131,420	170,000	813	102,148
20,000 and over	2,057	116,108	64,000	81,000	107,245	140,000	178,230	2,057	107,245

Overall, full-time salaried median income also shows an increase from smaller organizations to larger organizations, based on sales/revenue. Per Exhibit 36, the median income increases from $\$ 84,000$ for those in organizations with less than $\$ 50$ million in sales/revenue to $\$ 111,792$ for those working in organizations with over $\$ 2$ billion in sales/revenue.

EXHIBIT 36: INCOME (\$) BY ORGANIZATION SALES/REVENUE									
	All Respondents							Full-Time Salaried Only	
	$\begin{array}{c\|} \hline \text { \# of } \\ \text { Responses } \end{array}$	Mean	$\begin{aligned} & \text { 10th } \\ & \text { PctI } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { 25th } \\ \text { Pctl } \end{array} \end{aligned}$	Median	$\begin{aligned} & \text { 75th } \\ & \text { Pctl } \end{aligned}$	$\begin{aligned} & 90 \text { th } \\ & \text { Pctl } \\ & \hline \end{aligned}$	$\begin{gathered} \text { \# of } \\ \text { Responses } \end{gathered}$	Median
Under \$50 million	4,501	95,526	54,000	65,350	85,000	112,320	147,000	4,238	84,000
\$50-99.9 million	1,084	98,655	57,623	69,500	90,539	118,000	149,000	1,080	90,473
\$100-499.9 million	769	109,278	63,900	78,520	102,000	130,000	160,000	769	102,000
\$500-\$999.9 million	1,664	105,295	61,000	74,471	98,000	125,000	160,000	1,662	98,000
\$1-\$1.99 billion	847	109,824	63,000	76,572	100,556	131,500	167,000	847	100,556
\$2 billion and over	2,772	120,247	67,500	84,888	111,792	145,000	183,000	2,770	111,792

Policies and Practices

The tables in this section summarize the responses to the employment status, overtime, promotion, and benefits questions.

The "\# of Responses" reported reflects those that answered the question as "Yes" or the value that is being measured. The "\% of Responses" reflects the percentage that provided the requested value divided by the total number of responses for that question.

Employment Status

For example, Exhibit 37 displays the percentage of participants that changed employers during 2011. This table indicates that of 12,720 total responses, 1,673 engineers changed employers, or 13.2%.

EXHIBIT 37: PERCENTAGE OF PARTICIPANTS
THAT CHANGED EMPLOYERS DURING 2011

	\# of Responses	\% of Responses
Entire Sample Combined	1,673	13.2%
Engineer Level I	148	35.2%
Engineer Level II	145	22.9%
Engineer Level III	190	18.2%
Engineer Level IV	325	13.7%
Engineer Level V	351	12.1%
Engineer Level VI	260	10.0%
Engineer Level VII	176	9.3%
Engineer Level VIII	77	8.9%

EXHIBIT 38: PERCENTAGE OF PARTICIPANTS THAT WERE UNEMPLOYED BETWEEN JANUARY 1 AND DECEMEBER 31, 2011

	\# of Responses	\% of Responses	
Entire Sample Combined	623	4.9%	
Engineer Level I	113	26.8%	
Engineer Level II	82	13.0%	
Engineer Level III	79	7.6%	
Engineer Level IV	102	4.3%	
Engineer Level V	101	3.5%	
Engineer Level VI	77	3.0%	
Engineer Level VII	47	2.5%	
Engineer Level VIII	21	2.4%	

EXHIBIT 39: TIME PERIOD OF UNEMPLOYMENT

	Under 1 Month	At Least 1 Month, But Less than 3 Months	3 Months or More
Entire Sample Combined	18.5%	29.9%	51.7%
Engineer Level I	8.8%	29.2%	61.9%
Engineer Level II	25.6%	26.8%	47.6%
Engineer Level III	16.5%	34.2%	49.4%
Engineer Level IV	11.8%	33.3%	54.9%
Engineer Level V	24.8%	23.8%	51.5%
Engineer LeveI VI	26.0%	31.2%	42.9%
Engineer Level VII	25.5%	25.5%	48.9%
Engineer Level VIII	9.5%	42.9%	47.6%

Layoffs/Downsizing

The following tables summarize permanent job losses due to layoffs or downsizing.

EXHIBIT 40: PERCENTAGE OF PARTICIPANTS THAT LOST A PERMANENT JOB DUE TO LAYOFF/DOWNSIZING

	\# of Responses	\% of Responses
Entire Sample Combined	1921	15.1%
Engineer Level I	23	5.5%
Engineer Level II	37	5.8%
Engineer Level III	94	9.0%
Engineer Level IV	278	11.7%
Engineer Level V	540	18.7%
Engineer Level VI	517	19.9%
Engineer Level VII	327	17.3%
Engineer Level VIII	103	11.9%

EXHIBIT 41: NUMBER OF PERMANENT JOBS LOST DUE TO LAYOFF/DOWNSIZING

	One	Two	Three	Four or More
Entire Sample Combined	70.5%	19.8%	5.9%	3.9%
Engineer Level I	91.3%	4.3%	4.3%	0.0%
Engineer Level II	83.8%	13.5%	0.0%	2.7%
Engineer LeveI III	90.4%	7.4%	0.0%	2.1%
Engineer Level IV	79.4%	11.6%	6.1%	2.9%
Engineer Level V	66.1%	23.5%	5.7%	4.6%
Engineer Level VI	68.2%	21.9%	5.6%	4.3%
Engineer Level VII	64.8%	23.5%	8.0%	3.7%
Engineer Level VIII	69.9%	17.5%	8.7%	3.9%

EXHIBIT 42: RECENCY OF PERMANENT JOB LOSS DUE TO LAYOFF/DOWNSIZING

	Within the Past Year	Within the Past 2 Years	Within the Past 5 Years	Within the Past 10 Years	Over 10 Years
Entire Sample Combined	8.5%	13.2%	25.8%	20.0%	32.4%
Engineer Level I	26.1%	26.1%	34.8%	13.0%	0.0%
Engineer Level II	18.9%	13.5%	62.2%	5.4%	0.0%
Engineer Level III	17.0%	36.2%	40.4%	5.3%	1.1%
Engineer Level IV	11.9%	21.2%	38.5%	14.7%	13.7%
Engineer Level V	8.5%	11.1%	26.5%	23.1%	30.7%
Engineer Level VI	5.4%	10.4%	18.8%	22.4%	42.9%
Engineer Level VII	6.1%	8.3%	18.7%	23.2%	43.7%
Engineer Level VIIII	6.8%	8.7%	16.5%	16.5%	51.5%

EXHIBIT 43: TYPE OF SUBSEQUENT EMPLOYMENT FOUND AFTER LOSS OF PERMANENT JOB DUE TO LAYOFF/DOWNSIZING (AS A PERCENT OF PARTICIPANTS THAT LOST A PERMANENT JOB DUE TO LAYOFF/DOWNSIZING)

	Permanent Job	SelfEmployed as a Consultant	Temp Job for a Specific Time	Temp Job for Specific Project	Other NonPermanent Employment	Currently Unemployed
Entire Sample Combined	84.1\%	6.9\%	3.8\%	2.6\%	1.8\%	0.8\%
Engineer Level I	60.9\%	0.0\%	30.4\%	0.0\%	4.3\%	4.3\%
Engineer Level II	86.5\%	2.7\%	2.7\%	5.4\%	2.7\%	0.0\%
Engineer Level III	84.0\%	2.1\%	2.1\%	6.4\%	2.1\%	3.2\%
Engineer Level IV	85.3\%	3.6\%	5.4\%	2.5\%	2.5\%	0.7\%
Engineer Level V	87.4\%	4.4\%	3.5\%	2.6\%	1.3\%	0.7\%
Engineer Level VI	83.4\%	9.9\%	3.7\%	1.5\%	1.0\%	0.6\%
Engineer Level VII	82.9\%	8.6\%	2.4\%	2.1\%	3.1\%	0.9\%
Engineer Level VIII	77.7\%	14.6\%	1.9\%	5.8\%	0.0\%	0.0\%

EXHIBIT 44: ECONOMIC EFFECT AFTER LOSS OF PERMANENT JOB DUE TO LAYOFF/DOWNSIZING (AS A PERCENT OF PARTICIPANTS THAT LOST A PERMANENT JOB DUE TO A LAYOFF/DOWNSIZING)

	Better Almost Immediately, Better Overall to Date	Better Almost Immediately, Worse Overall to Date	Worse Almost Immediately, Better Overall to Date	Worse Almost Immediately, Worse Overall to Date
Entire Sample Combined	40.4%	6.1%	36.9%	16.6%
Engineer Level I	47.8%	0.0%	26.1%	26.1%
Engineer Level II	37.8%	8.1%	40.5%	13.5%
Engineer Level III	32.6%	5.4%	42.4%	19.6%
Engineer Level IV	44.2%	8.3%	33.7%	13.8%
Engineer Level V	44.1%	6.7%	33.7%	15.5%
Engineer Level VI	38.4%	5.8%	37.9%	17.9%
Engineer Level VII	38.2%	4.6%	40.4%	16.8%
Engineer Level VIII	35.0%	4.9%	17.5%	

EXHIBIT 45: CHANGE IN STARTING SALARY AFTER LOSS OF PERMANENT JOB COMPARED TO PREVIOUS SALARY (AS A PERCENT OF PARTICIPANTS THAT LOST A PERMANENT JOB DUE TO A LAYOFF/DOWNSIZING)							
	20% or more Lower	10-19\% Lower	$\begin{aligned} & \text { 5-9\% } \\ & \text { Lower } \end{aligned}$	Within 5\%	$\begin{gathered} \text { 5-9\% } \\ \text { Higher } \end{gathered}$	10-19\% Higher	20% or more Higher
Entire Sample Combined	15.2\%	12.9\%	7.5\%	29.5\%	12.6\%	11.8\%	10.4\%
Engineer Level I	13.0\%	4.3\%	8.7\%	34.8\%	17.4\%	4.3\%	17.4\%
Engineer Level II	11.1\%	8.3\%	5.6\%	36.1\%	16.7\%	13.9\%	8.3\%
Engineer Level III	6.5\%	15.1\%	10.8\%	33.3\%	17.2\%	7.5\%	9.7\%
Engineer Level IV	13.5\%	11.3\%	7.7\%	30.3\%	14.6\%	10.6\%	12.0\%
Engineer Level V	12.5\%	12.7\%	6.2\%	32.5\%	13.6\%	12.1\%	10.4\%
Engineer Level VI	17.6\%	14.0\%	8.1\%	29.7\%	10.7\%	11.6\%	8.3\%
Engineer Level VII	18.0\%	13.8\%	8.0\%	21.1\%	12.5\%	15.0\%	11.6\%
Engineer Level VIII	22.3\%	12.6\%	6.8\%	31.1\%	5.8\%	9.7\%	11.7\%

Change in Base Salary

71.9% of all survey respondents indicated a salary increase in 2011. Of those respondents, the average increase was 5.73% and the median increase was 3.6%.

| EXHIBIT 46: PERCENTAGE OF PARTICIPANTS | |
| ---: | ---: | ---: |
| INDICATING A CHANGE IN BASE SALARY IN 2011 | |

Promotions

Contract/Temporary/Consulting Employment

EXHIBIT 47: PERCENTAGE OF PARTICIPANTS THAT WERE PROMOTED IN 2011

	\# of Responses	\% of Responses
Entire Sample Combined	2,209	17.4%
Engineer Level I	39	9.26%
Engineer Level II	134	21.17%
Engineer Level III	241	23.04%
Engineer Level IV	558	23.57%
Engineer Level V	520	17.99%
Engineer Level VI	357	13.76%
Engineer Level VII	273	14.44%
Engineer Level VIII	85	9.86%

EXHIBIT 48: PERCENTAGE OF ORGANIZATIONS USING CONTRACT/TEMPORARY/CONSULTING EMPLOYEES AS A PERCENTAGE OF TOTAL ENGINEERING WORKFORCE OF THE ORGANIZATION

	\# of Responses	$\%$ of Responses
None	2,789	21.93%
$1 \%-4.9 \%$	1,995	15.68%
$5 \%-9.9 \%$	2,647	20.81%
$10 \%-24.9 \%$	1,465	11.52%
25% or more	1,116	8.77%
Unknown	780	6.13%
1,656	13.02%	

Compensatory Time Off for Salaried/Exempt Engineers

EXHIBIT 49: PERCENTAGE OF PARTICIPANTS
THAT ARE SALARIED/EXEMPT* ENGINEERS

	\# of Responses	$\%$ of Responses
Entire Sample Combined	11,248	88.4%
Engineer Level I	296	70.3%
Engineer Level II	485	76.6%
Engineer Level III	841	80.4%
Engineer Level IV	1,976	83.5%
Engineer Level V	2,609	90.3%
Engineer Level VI	2,447	94.3%
Engineer Level VII	1,784	94.3%
Engineer Level VIII	801	92.9%

*Not paid an hourly rate and exempt from the provision of the Fair Labor Standards Act.

EXHIBIT 50: PERCENTAGE OF PARTICIPANTS ELIGIBLE
FOR OVERTIME PAY OR COMPENSATORY TIME OFF
(AS A PERCENTAGE OF INDIVIDUALS RESPONDING TO THE QUESTION)

	\# of Responses	\% of Responses
Entire Sample Combined	3,982	31.3%
Engineer Level I	134	31.8%
Engineer Level II	233	36.8%
Engineer Level III	392	37.5%
Engineer Level IV	849	35.9%
Engineer Level V	1,036	35.8%
Engineer Level VI	740	28.5%
Engineer Level VII	428	22.6%
Engineer Level VIII	168	19.5%

EXHIBIT 51: CIRCUMSTANCES UPON WHICH ORGANIZATIONS COMPENSATE EXEMPT ENGINEERS FOR WORKING OVERTIME (AS A PERCENTAGE OF ORGANIZATIONS GRANTING COMPENSATION UNDER ANY CIRCUMSTANCE)

	\# of Responses	Worked During Normal Workweek	6th Workday	7th Workday	Holiday
Entire Sample Combined	3,982	90.9%	85.1%	84.2%	81.3%
Engineer Level I	134	90.3%	70.9%	68.7%	64.2%
Engineer Level II	233	93.1%	83.7%	82.4%	78.1%
Engineer Level III	392	91.6%	84.4%	83.7%	80.1%
Engineer Level IV	849	92.1%	87.8%	88.0%	80.7%
Engineer Level V	1,036	91.4%	85.9%	84.5%	83.2%
Engineer Level VI	740	90.4%	85.5%	85.0%	84.2%
Engineer Level VII	428	86.9%	83.2%	81.3%	81.5%
Engineer Level VIII	168	89.9%	85.1%	82.7%	81.0%

EXHIBIT 52: TYPE OF COMPENSATION EXEMPT ENGINEERS RECEIVE FOR WORKING OVERTIME

	\# of Responses	Cash Pay Only	Compensatory Time Off	Cash Pay or Time Off
Additional Hours in Normal Workweek	3,620	49.7%	29.0%	21.4%
6th Workday	3,390	50.3%	28.9%	20.8%
7th Workday	3,352	50.3%	28.7%	21.0%
Holiday	3,239	47.9%	29.9%	22.1%

EXHIBIT 53: RATE PAID TO EXEMPT ENGINEERS FOR WORKING OVERTIME WHEN CASH IS PAID

	\# of Responses	Less than Straight Time	Straight Time	Time and One-Half	Straight One-Half Normal Workweek	Combo of Double Time	Comaight Strand anemium Rate
Additional Hours in Normal Workweek	3,211	4.1%	67.3%	6.1%	1.7%	0.1%	1.3%
6th Workday	3,030	3.7%	63.2%	6.3%	1.6%	0.1%	1.3%
7th Workday	3,009	3.7%	62.5%	5.8%	1.4%	1.0%	1.3%
Holiday	2,967	3.4%	59.3%	5.7%	1.4%	3.0%	1.7%

Registration

EXHIBIT 54: PERCENTAGE OF PARTICIPANTS THAT OBTAINED THEIR REGISTRATION AS A PROFESSIONAL ENGINEER IN 2011

	\# of Responses	\% of Responses
Entire Sample Combined	787	6.2%
Engineer Level I	5	1.2%
Engineer Level II	23	3.6%
Engineer Level III	93	8.9%
Engineer Level IV	476	20.1%
Engineer LeveI V	129	4.5%
Engineer Level VI	39	1.5%
Engineer Level VII	18	1.0%
Engineer Level VIII	3	0.3%

Employer-Sponsored Benefit Plans

A standard set of benefits is provided to 56.67% of survey respondents, while the remaining 43.33% are provided with flexible or "cafeteria" benefits.

EXHIBIT 55: BENEFITS PROVIDED TO SURVEY PARTICIPANTS						
	rovided ponses)	Fully Employer Paid	Partially Employee Paid	Fully Employee Paid	Supplemental Coverage Option Offered	Family Coverage Option Offered
Retirement Plans						
Defined Benefit Plan	8,414	23.2\%	76.8\%	NA	NA	NA
401(k) Plan	10,189	NA	80.9\%	19.1\%	NA	NA
403(b)	553	NA	68.2\%	31.8\%	NA	NA
Thrift Plan	975	10.8\%	61.6\%	27.6\%	NA	NA
Profit Sharing Plan	2,393	77.5\%	17.6\%	4.9\%	NA	NA
ESOP	1,809	45.9\%	33.7\%	20.4\%	NA	NA
457 Deferred Comp	1,009	10.4\%	18.6\%	71.0\%	NA	NA
Money Purchase Plan	137	33.6\%	25.5\%	40.9\%	NA	NA
Health and Welfare Plans						
Life Insurance	10,585	47.1\%	45.3\%	7.6\%	40.1\%	35.1\%
Short-Term Disability	9,281	44.4\%	37.9\%	17.7\%	27.3\%	NA
Long-Term Disability	8,704	53.8\%	31.7\%	14.5\%	23.2\%	NA
Medical Insurance	12,015	13.3\%	83.9\%	2.7\%	12.3\%	58.1\%
Dental Insurance	11,063	13.5\%	77.4\%	9.1\%	11.4\%	56.9\%
AD \& D Insurance	7,377	40.1\%	47.2\%	12.7\%	28.3\%	28.2\%
Vision Insurance	9,178	14.5\%	73.4\%	12.1\%	11.5\%	53.3\%
Retiree Medical Insurance	2,334	10.8\%	72.2\%	17.1\%	16.2\%	42.5\%
Reimbursement Accounts						
Dependent Care Costs	5,940	NA	29.7\%	70.3\%	NA	NA
Medical Costs	7,427	NA	34.5\%	65.5\%	NA	NA

DEMOGRAPHICS

1. Indicate your EEO classification. (check only one)
2. [] White (not of Hispanic origin)
3. [] Black
4. [] Hispanic
5. [] Asian or Pacific Islander
6. [] American Indian or Alaskan Native
7. [] Other (not adequately described above)
8. [] I prefer not to answer this question.
9. Indicate your gender (for statistical purposes only). (check only one)
10. [] Male
11. [] Female
12. [] I prefer not to answer this question.

EXPERIENCE, EDUCATION, AND REGISTRATION/CERTIFICATION STATUS

1. Indicate the total number of years of professional experience you have had in the engineering field, including related managerial experience. (check only one)
2. [] Under 1 year
3. [] 1 year
4. [] 2 years
5. [] 3 years
6. [] 4 years
7. [] 5-9 years
8. [] $10-14$ years
9. [] $15-19$ years
10. [] $20-24$ years
11. [] 25-29 years
12. [] 30 years or more
13. Indicate your highest degree earned. Exclude honorary degrees. (check only one)
14. [] Less than a BA/BS Degree
15. [] BA Degree
16. [] BS Degree (non-engineering)
17. [] BS Degree (engineering)
18. [] MA/MS Degree (not MBA or engineering)
19. [] MBA Degree
20. [] MS Degree (engineering)
21. [] MBA and an MA or MS Degree
22. [] Doctorate (non-engineering)
23. [] Doctorate (engineering)
24. [] Other (please specify)
25. Indicate your licensing/certification status. (check only one)
26. [] No professional licensing or certification
27. [] Engineer-in-training/engineer intern
28. [] Professional Engineer (PE)
29. [] Professional Engineer (PE) and certification in environmental engineering
30. [] Professional Engineer (PE) and certification in forensic engineering
31. [] Professional Engineer (PE) and certification in some other engineering specialty (safety, fire protection, etc.)
32. [] Professional Engineer (PE) and Professional Surveyor (PS) or Land Surveyor (LS)
33. [] Professional Engineer (PE) and some other professional registration (RA, MD, CPA, Bar, etc.)
34. [] Other (please specify)
35. Did you become a Professional Engineer (PE, not any other certification) in 2003?.

PROFESSIONAL RESPONSIBILITY

1. Which of the following best describes your current major branch of engineering work? (check only one)
2. [] Aeronautical/aerospace/ astronautical
3. [] Agricultural
4. [] Architectural
5. [] Biomechanical/ biomedical
6. [] Ceramic
7. [] Chemical
8. [] Civil
9. [] Coastal
10. [] Computer
11. [] Control systems
12. [] Corrosion
13. [] Cost management
14. [] Electrical
15. [] Electronics
16. [] Environmental
17. [] Ergonomics
18. [] Facilities
19. [] Fire protection
20. [] Forensic
21. [] Geotechnical
22. [] Health care facility
23. [] Heating, ventilating, air conditioning, and refrigeration
24. [] Industrial
25. [] Manufacturing
26. [] Marine
27. [] Materials
28. [] Mechanical
29. [] Metallurgy
30. [] Minerals and metals
31. [] Mining
32. [] Naval
33. [] Nuclear
34. [] Ocean
35. [] Optical
36. [] Petroleum
37. [] Plastics
38. [] Plumbing
39. [] Pollution
40. [] Quality assurance
41. [] Reliability
42. [] Robotics
43. [] Safety
44. [] Sanitary
45. [] Software
46. [] Structural
47. [] Systems
48. [] Transportation
49. [] Welding
50. Which one of the following best describes your current job function? (check only one)
51. [] Construction supervision (may include some design)
[] Consulting
[] Design
Drafting/estimating
52. [] Executive/administrative/legal
53. [] Production/quality management/maintenance/process control/performance/risk control/loss control/safety
54. [] Project management/engineering/operations
55. [] Planning/project study and analysis valuation/testing
56. [] Research and development/applications
57. [] Sales/marketing/public relations
58. [] Teaching/training/technical writing
59. [] Not-for-profit/public service
60. [] Other (please specify) \qquad
61. Select the statement which best describes your current supervisory status. (check only one)
62. [] I supervised engineers, scientists, and/or technologists (without significant involvement in directing the activities of clerical, construction, maintenance, or production employees).
63. [] I supervised clerical, construction, maintenance, and/or production employees (without significant involvement in directing engineers, scientists, and/or technologists).
64. [] I supervised the types of employees described above equally.
65. [] I had no consistent supervisory responsibility (staff engineering or specialist, consultant, etc.).
66. [] Other (please specify)
67. Indicate the number of employees you currently supervise (through subordinate supervisors) or direct. ... \qquad
68. Indicate which position best describes your current level of professional responsibility (as defined in the table on pages 5 and 6). (check only one)
69. [] Position Code: 1001, Engineer I/II
70. [] Position Code: 1003, Engineer III
71. [] Position Code: 1004, Engineer IV
72. [] Position Code: 1005, Engineer V
73. [] Position Code: 1006, Engineer VI
74. [] Position Code: 1007, Engineer VII
75. [] Position Code: 1008, Engineer VIII

COMPENSATION

1. What is your current annual base salary from your primary full-time job? (Exclude fees, overtime pay, bonuses, and commissions. Also, exclude income from secondary employment such as part-time teaching, part-time consulting, etc.) \$
2. During the last calendar year, did you receive additional cash income from your primary job? (Additional cash income includes fees, bonuses, and commissions, and excludes salary, overtime pay, and income from secondary or part-time employment.)
(If no, go to question 4)
3. If yes, indicate the amount of additional cash income you received during the last calendar year. \$ \qquad Report in whole numbers
4. Indicate the percentage increase in your annual base salary during the last calendar year. (check only one)
5. [] Not applicable (self-employed/ unemployed/retired/student)
6. [] Salary decreased
7. [] No change
8. [] Increased less than 2%
9. [] Increased $2-2.9 \%$
10. [] Increased 3-3.9\%
11. [] Increased 4-4.9\%
12. [] Increased $5-5.9 \%$
13. [] Increased 6-6.9\%
14. [] Increased 7-7.9\%
15. [] Increased 8-8.9\%
16. [] Increased $9-10.9 \%$
17. [] Increased $11-12.9 \%$
18. [] Increased 13-14.9\%
19. [] Increased $15-16.9 \%$
20. [] Increased $17-18.9 \%$
21. [] Increased $19-20.9 \%$
22. [] Increased $21-22.9 \%$
23. [] Increased $23-24.9 \%$
24. [] Increased 25% or more
25. Were you promoted during the last calendar year? \qquad Yes [] No []
26. Are you a salaried/exempt engineer (not paid an hourly rate and exempt from the provisions of the Fair Labor Standards Act)? \qquad Yes [] No []
(If no, go to next section)
27. If yes, are you eligible for additional cash compensation or compensatory time-off for "overtime" hours worked under any circumstances?
28. Are "overtime" hours worked during the normal workweek (i.e., not holiday or weekends) included \qquad Yes []
29. Indicate the type of compensation provided:
a. Type of Compensation

(check only one per line)

(check only one per line)

	Engineer Level I	Engineer Level II	Engineer Level III	Engineer Level IV
General Characteristics	Acquires limited knowledge and develops basic skills. Applies prescribed techniques and procedures in accordance with established criteria to perform assigned tasks. Performs routine technical work which does not require previous experience. Acquires an understanding of professional and ethical responsibilities	Acquires basic knowledge and develops skills in a specific practice area. Applies standard techniques, procedures, and criteria to perform assigned tasks as part of a broader assignment. Exercises limited judgment on details of work and in application of standard methods for conventional work.	Develops broad knowledge and skills in a specific practice area. Evaluates, selects, and applies standard techniques, procedures, and criteria to perform a task or sequence of tasks for conventional projects with few complex features. Collaboratively uses judgment to determine adaptations in methods for non-routine aspects of assignments. Works on small projects or portions of larger projects.	Applies broad knowledge of principles and practices in a specific practice area. Independently evaluates, selects, and adapts standard techniques, procedures, and criteria. Acquires general knowledge of principles and practices of related fields, and ability to function on multi-disciplinary teams. Works on multiple projects of moderate size or portions of major projects.
Technical Responsibilities	Collects data and gathers information or documents. Performs standard computations or analysis. Prepares drawings and visual aids. Observes construction activities. Performs basic survey work.	Performs basic design tasks. Assists on other tasks such as: preparation of permit applications, material testing, and CADD work.	Performs moderate design tasks. Prepares portions of project documents. Edits specifications. Performs research and investigations.	Designs a complete project, system, component, or process. Prepares complete project documents. Designs and conducts experiments, and analyzes and interprets data. Formulates and solves problems.
Managerial Responsibilities	No managerial responsibilities at this level.	Assigns tasks to and coordinates with technicians or administrative staff.	Assigns tasks to and coordinates work with entry-level engineers, technicians, or administrative staff. Assists in determining schedule and budget requirements.	Assigns tasks to and directs engineers, technicians and administrative staff. Plans and coordinates detailed aspects of the engineering work. Prepares scopes, budgets, and schedules for assignments. Assists with proposals to provide professional services or obtain funding for engineering projects or programs.
Direction Received	Receives close supervision on all aspects of assignments.	Receives close supervision on unusual or difficult problems, and general review of all aspects of work.	Receives instruction on specific objectives. Receives direction on unconventional and/or complex problems, and possible solutions. Receives a thorough review of completed work for application of sound professional judgment.	Receives general direction on key objectives. Receives guidance when necessary on unconventional or complex problems, direction on modified techniques, and new approaches on assignments with conflicting criteria.
Communication Skills	Possesses basic oral and written communication skills. Interacts with other staff.	Interacts with staff, general public, officials, and contractors.	Possesses effective oral and written communication skills. Assists with client, customer, or official contacts and communication pertaining to specific assignments or meetings.	Interacts with clients, customers, officials, contractors, and others. Attends project meetings and presents specific aspects of engineering assignment.
Typical Titles	Engineer in Training, Engineer Engineering Instructor	ing Intern, Assistant Engineer,	unior Engineer, Staff Engineer,	Civil Engineer, Associate Engineer, Project Engineer, Resident Engineer, Assistant Professor
Equivalent Federal General Schedule	GS-5	GS-7	GS-9	GS-11

	Engineer Level V	Engineer Level VI	Engineer Level VII	Engineer Level VIII
General Characteristics	Independently applies extensive and diversified knowledge of principles and practices in broad areas of assignments and related fields. Uses advanced techniques in the modification or extension of theories and practices of sciences and disciplines to complete assignments. Works on a major project or several projects of moderate scope with complex features.	Applies a thorough knowledge of current principles and practices of engineering as related to the variety of aspects affecting their organization. Applies knowledge and expertise acquired through progressive experience to resolve crucial issues and/or unique conditions. Keeps informed of new methods and developments affecting their organization, and recommends new practices or changes in emphasis of programs. Works on programs of limited complexity and scope.	Uses creativity, foresight, and mature judgment in anticipating and solving unprecedented problems. Makes decisions and recommendations that are authoritative and have an important impact on extensive organizational activities. Sets priorities and reconciles directions from competing interests Works on programs with complex features.	Makes decisions with broad influence on the activities of their organizations. Makes authoritative decisions and recommendations that are conclusive, and have a far-reaching impact on the organization. Demonstrates a high degree of creativity, foresight, and mature judgment in planning, organizing and guiding extensive programs and activities of major consequence.
Technical Responsibilities	Reviews complete project documents for conformity and quality assurance. Develops new techniques and/or improved processes, materials, or products. Assists upper level management and staff as a technical specialist or advisor.	Serves as the technical specialist for the organization in the application of advanced concepts, principles, and methods in an assigned area. Keeps informed of new developments and requirements affecting the organization for the purpose of recommending changes in programs or applications. Interprets, organizes, executes and coordinates assignments.	Develops standards and guidelines. Leads the organization in a broad area of specialization or in narrow but intensely specialized field.	Performs advisory or consulting work for the organization for broad program areas or an intensely specialized area with innovative or important aspects. Performs advisory or consulting work for the organization for broad program areas or an intensely specialized area with
Managerial Responsibilities	Supervises all staff necessary to complete assignments. Reviews and approves scopes, budgets, and schedules for assignments. Prepares proposals to provide professional services or obtain funding for engineering projects or programs.	Supervises a staff of engineers and technicians. Plans, schedules, or coordinates the preparation of documents or activities for multiple major projects, or is responsible for an entire program of an organization. Reviews operational procedures to insure compliance with applicable policies and performance measures.	Supervises several organizational segments or teams. Recommends facilities, personnel, and funds required to carry out programs Oversees the technical, legal, and financial issues of an entire program. Determines program objectives and requirements. Develops standards and guidelines.	Leads an entire program of critical importance. Decides the kind and extent of engineering and related programs needed for accomplishing the objectives of an organization.
Direction Received	Receives supervision and guidance relating to overall objectives, critical issues, new concepts, and policy matters. Receives direction on unusual conditions and developments.	Receives administrative supervision with assignments given in terms of broad general objectives and limits.	Receives administrative supervision with assignments given in terms of broad general objectives and limits.	Receives general administrative direction from a board of directors or regional council.
Communication Skills	Possesses advanced oral and written communication skills. Represents the organization in communications and conferences pertaining to broad aspects of engineering assignments.	Routinely interacts with clients, customers, officials, contractors, and others. Leads project meetings and makes presentations. Represents the organization and maintains liaison with individuals and related organizations.	Possesses exceptional oral and written communication skills. Routinely interacts with organization leaders, clients, customers, officials, contractors, and others. Initiates and maintains extensive contacts with key engineers and officials or other organizations and companies and is skilled in persuasion and negotiation of critical issues.	Negotiates critical and controversial issues with toplevel engineers and officers of other organizations and companies. Conducts presentations and may participate in media interviews. Represents their organization at important functions or conferences, including media interviews as required.
Typical Titles	Senior Engineer, Project Manager, Associate Professor	Principal Engineer, District Engineer, Engineering Manager, Professor	Director, Program Manager, City Engineer, County Engineer, Division Engineer, Department Head, Vice President	Bureau Engineer, Director of Public Works, Dean, President
Equivalent Federal General Schedule	GS-12	GS-13	GS-14	GS-15, Senior Executive Service (SES)

ISBN: 978-0-7844-1245-9

